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An Actuator-Disc Model for the Prediction 
of Abrupt Stall in an Axial Compressor Rotor 

A. J. A1-Daini* and J. W. Rai l lyt  

The representation of loss in a cascade by the appearance of blockage has been extended to deal with blade 
rows by the use of a source distribution to represent this blockage, and in the case of the actuator disc 
approximation, the presence of sources is confined to an axi-symmetric d]stribution over the actuator disc. 
It is found that if a typical dependence of loss (and consequently diffusion ratio) upon incidence for each 
section of an axial compressor rotor is represented in this manner, the influence of blockage on the axial 
velocity distribution may be found using the potential equation combined with the usual actuator disc 
approximation. Study of the behaviour of the controlling ordinary differential equation for the axial 
velocity ahead of the disc reveals that as the flow is reduced, the equation contains a singularity within the 
range of radius and a meaningful solution does not exist. This result is interpreted as the limit to 
continuous operation and reasonable agreement between this predicted limit and the appearance of 
abrupt stall (experimentally) is found. 

NOTATION V~ 

A2, A 3 the restricted and the total area between 
blades (Figure 1) Xs 

A, B as defined in eq. (16) 
C(r) this is defined in Appendix 1 
D diffusion ratio defined by V2.id/V i Y 
D' dD/d cot fll Z 
D's the value of D' at which abrupt stall ct 

commences 
Dm the minimum diffusion factor Ctm 
E(r) as defined in Appendix 1 
f(r), F(r) functions of r, eqs (7) and (9) fl,, f12 
h blade height 
H (RI total head relative to rotor 
H(+oo) ,  the total head at +oo and - o o ,  ~bs 
H( - oo ) respectively ~b,,. 
k n/h 
P static pressure ~,.c 
r radius 
S source strength q/2 
S~ dS/dr 
t 2 tan f12 42, 
t~ d tan f12/dr 
V2.id the total velocity of the flow at blade f~ 

outlet 
V, the total inlet velocity of the flow at blade 

inlet 
V~, V~, F0 axial, radial, and tangential components 

of velocity 
V'z, V~' axial velocity at blade inlet and outlet, 

respectively 
Vz._,~,V~.+~o axial velocity at - o o  and +oo, 

respectively 
V~. o axial velocity exactly in the plane 

source/actuator disc 
Vr_, V,+ radial velocity at blade inlet and blade 

outlet, respectively 
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tangential component of velocity at 
blade outlet 
loss coefficient defined by 

( H  (R, - -  H(R))/(IV 2) 

cos/ ,/cos 
axial direction 
the blockage ratio equal to A z / A 3  

(Fig. 1) 
the blockage ratio at minimum diffusion 
ratio 
relative inlet and outlet angles for 
source/actuator disc 
density 
the potential of the source flow 
overall flow coefficient at which neutral 
stability is satisfied 
the singularity limit overall flow 
coefficient 
total to static pressure coefficient defined 
by (P~ /p - H t)/(~Q2r 2) 
overall total to static pressure coefficient 
based on tip speed 
rotor speed in rad/sec 

INTRODUCTION 

Examination of the stability of isolated aerofoil com- 
pressor cascades, for example, Stenning and Kriebel 
(1), reveal that non-uniform flow (in the form of waves 
travelling along the cascade axis) will develop if the 
slope of the loss-incidence curve is sufficiently high. In 
the work above quoted, instead of loss, a blockage 
ratio, ct, is introduced (see Fig. 1) which is related to the 
loss coefficient, X.~, as follows: 

1 _  1 + Xs c°s2 f12 (1) 
t~2 --  COS2 fit 

The theory then shows that the above instability occurs 
when 

dot ct (2) = 

d(cot #,) cot #t 
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Fig. 1. Flow model 

In the case of an isolated rotor row (of hub/tip ratio 
close to unity) eq. (2) is the same as 

dq 2 = 0 (3) 
d(cot fit) 

where ~2 is the total-to-static pressure rise coefficient. 
When the performance of an actual rotor row is con- 

sidered, it would seem reasonable to test the perfor- 
mance, at each radius, in terms of eq. (3). It is frequently 
found that the point of abrupt stall coincides with the 
presence of the above condition at some radius. It is also 
found that there are appreciable regions where the con- 
dition is complied with but abrupt stall fails to appear; 
the experimental pressure-volume characteristic 
depicted in Fig. 7 demonstrates such a behaviour; data 
on this rotor is given in Appendix 2. Furthermore, it is 
evident that abrupt stall occurs sharply, with accurate 
repeatability (in terms of throttle setting) and quite with- 
out warning. In the search for more effective criteria for 
stall prediction an alternative steady flow performance 
model was formulated. The model chosen for investiga- 
tion was one which incorporated a loss model which, it 
was thought, would represent the more important 
aspects of loss on the flow distribution. In practice, 
losses arise as a consequence (for some reason or 
another) of flow separation within the blading. The 
actual loss mechanism, namely, the 'mixing-out' of the 
eddies produced by this separation, is highly complex 
but tends to occur downstream of the trailing edges and 
thus might not have much effect ahead of the row. On 
the other hand, the separation process behaves as if the 

flow passing through the blades were 'blocked'; in fact, 
this mechanism is that used by Stenning and Kriebel in 
their study of stability. In a rotor, the blockage which 
occurs at any particular radius will correspond to the 
local incidence condition and, therefore, must vary more 
strongly over the radius as the flow coefficient is 
reduced. 

In the following treatment, the potential flow effects of 
this varying blockage will be represented by a source 
distribution in the plane of the rotor row. In fact, since 
the rotor row may be replaced by an actuator disc, the 
blockage influence may be represented by a source-disc 
co-incidental with the former. The source intensity S (at 
any radius) will be defined using the same flow descrip- 
tion as in the definition of ct above, and the actual value 
of the former must rest upon some suitable hypothesis in 
regard to its dependence on incidence. The representa- 
tion of the blade row performances in these terms is 
discussed below, and the resulting axi-symmetric flow 
which occurs as a consequence of the superposition of a 
source-disc on to an actuator disc is explored. 

R E P R E S E N T A T I O N  O F  LOSS BY A 
S O U R C E  DISTRIBUTION 

Referring to Fig. 1, it is evident that the area, ,4 3, at the 
blade row exit is reduced as a consequence of the separa- 
tion, which results in the appearance of a stagnant zone. 
From the viewpoint of the flow ahead of the row, this 
stagnant zone may be satisfactorily represented by a 
source output just adequate to fill the stagnant zone with 
fluid having the same velocity as the existing 'jet', 
namely, V2.i a which may be assumed to be flowing at the 
angle ofthe normally attached flow, namely, f12- The axial 
component of velocity behind the row, V', in the 
presence of sources, must thus be larger than that enter- 
ing. In fact, the source intensity per unit area of disc 
must be given (see Fig. 2) by: 

S V" ' = - z -  Vz (4) 

In terms of the blockage ratio, co, it follows also that: 

CX= A 2 / A  3 = I/2 = - -  V'z (5)  
V2.id V" 

Introducing the diffusion ratio, D, given by 

D -  Vz'id (6) 
v, 

it may be seen that the pressure change across the row 
may be calculated by applying Bernouiili's equation in 
the absence of loss between '1' and '2'. In practice, 
momentum mixing (in the absence of sources) will occur 
downstream giving a pressure rise and an increase in 
outlet angle. It is an assumption of this work that this 
mixing occurs sufficiently far away from the trailing 

- 0  +0 

Z 

Fig. 2. Actuator/source disc model 
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edges to allow the ignoring of its influence upon the 
three-dimensional (axi-symmetric) flow. In that event, 
the source output may be assumed to be present in the 
flow field to downstream infinity of the disc. 

M OD I FI E D ACTUATOR DISC SOLUTION 

In actuator disc theory, for example, Marble (2), it is 
demonstrated that the radial velocity may be found from 
the solution of a linear equation and it is frequently 
assumed that a single term approximation is adequate, 
namely, 

V~ = f ( r )  e T M  (7) 

which is appropriate to an isolated rotor in a long cylin- 
drical annulus. 

In this expression it has been assumed that the radial 
velocity is continuous across the disc in common with 
the usual requirement of radial blades. It should be 
noted that the above solution for the source disc also 
leads to continuity of the radial component of velocity, 
but at the same time there is a change in the radial 
momentum flux across the disc (associated with the 
change in the axial component of velocity), even with 
zero stagger blading. 

In the formulation of the boundary conditions to be 
satisfied, the above velocity is usually neglected in com- 
parison with the whirl and axial components when these 
latter are combined in the equation of motion. Con- 
sequently, since the presence of a source disc will give 
rise to a further field of radial velocity, it is permissible to 
add these fields together in the process of finding the 
resulting distribution of axial velocities. Considering the 
source disc, therefore, in isolation, the resulting flow may 
be seen to arise from the solution of the potential equa- 
tion in cylindrical polar co-ordinates, with the boundary 
conditions on either side of the disc given by 

s = ~ , = + o  - ~ ,77--1,.=-o (8) 

where 4), is the potential of the source flow of which the 
first term solution may be given by: 

qS~ = F(,') e -+k~ (9) 

and the total potential is Vzoz + ~ .  Then F(r) may be 
written in terms of S and, further, 

z < 0  

(10) 

are the radial velocity components due to this source 
distribution; the suffix on S implies differentiation with 
respect to radius. In eqs (7) and (9), it will be sufficiently 
accurate to take k from the solution of the Laplace equa- 
tion in rectangular co-ordinates (corresponding to a 
hub/tip ratio close to unity), which, being in terms of 
trigonometric functions, gives the usual value rc/h for 
both constants. 

From the equation of continuity in cylindrical polar 
form (in axial symmetry) 

r ~r (rV~) + -  = 0 (11) 

the resulting axial velocity distribution may be found by 
adding the two radial velocity fields together. It then 
follows that 

V z - V z . _ ~ = -  ~ d r ~  2k " 

V ~ . + ~ -  V , = -  ~ 2k I e ' > 

(12) 

At the leading and trailing edges of the source/vortex 
disc the axial velocities are 

S 
v,.._ o = v'~ = V ~ . o - ~  

S 
v.,.+o = v . 7 =  V~.o + ~ 

(13) 

where V~. o is the axial velocity exactly in the plane of the 
disc. From eqs. (12) it may be shown, by subtraction, 
that 

dV~.o _ 1 dV.¢.+,~ 
dr 2 dr 

(14) 

putting z equal to zero in each equation. 
The quantity on the right ofeq. (14) is, in fact, halfthe 

value of the tangential vorticity on the downstream side 
of the row and may be found from the equation of radial 
equilibrium applied at downstream infinity, provided 
the usual linearization assumptions are made, namely, 
that at radius r, 

n ( + ~ )  = n ( - ~ ) +  f~,-(v~; - v~,) 

v0(+ oo) = Vo 

which gives the total energy in terms of the blade work. 
Eliminating Vo in terms of relative outlet angle at the disc 
(which it will be remembered is the usual 'attached flow' 
value f12) then the resulting equation for V',, the axial 
velocity in front of the disc, is as follows: 

(2V'z + 2S + (V'z + S)t2,) dV'z 
dr 

= 2fiZr - ~rt'2 V'~ - ~r t ' zS  - ~ t 2 r S  r - t 2 f l V '  z 

- t2O.S - V',Sr - SSr + (V'zt 2 + St  2 - f i r )  

(2f~r - V ' z t ' 2 r -  S t ' 2 r -  t2rSr - V'd2 - St2)  
x 

(15) 

in which t2, t~ are short for tan f12 and its radial gradi- 
ent. In this equation use has been made of the first of 
eqs (13) to eliminate Vz.o. It is possible to combine eqs 
(5) and (6) to give 

c o s  fl l 
cc = - -  (15a) 

O cos f12 

which, together with eqs (4) and (5) may be used to 
obtain S in terms of V'z, D and f12 ; the resulting expres- 
sion is given in Appendix 1. It is then necessary to obtain 
St in terms of V~ and its gradient, involving also the inlet 
angle ill. These details are also given in Appendix 1, 
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where the final equation, being rather lengthy, is given in 
full. It is of the form 

dV'z 
A ~ = B (16) 

The numerical solution of equations of this type may be 
obtained using the Runge-Kutta technique once an in- 
itial value (at the hub or tip) of the axial velocity V'z is 
assumed. In this way, a series of solutions may be con- 
structed corresponding to a range of mass flows. 
However, an important limitation arises should there be 
a zero value for the coefficient A somewhere within the 
range of radius. There are circumstances in the present 
problem where this condition arises which have impor- 
tant implications. Before discussing these, it is necessary 
to go into more detail in regard to the dependence of 
blockage upon local incidence. 

A UNIVERSAL BLOCKAGE EQUATION 

As pointed out above, the loss process has been divided 
into a loss-free separation at the blade row exit and a 
downstream mixing process which latter is being 
regarded as being unimportant for the flow equilibrium. 
This model is an oversimplification in view of the fact 
that a more severe separation might occur at hub and tip 
(due to three-dimensional effects) while elsewhere, the 
flow, being nearly two-dimensional, will display a lesser 
degree of separation. Nevertheless, a blockage value a 
will be assumed to be, at each radius, a function of inlet 
angle ~ alone, but subject to other parameters which 
would vary with the section (and, therefore, be functions 
of radius). 

It is readily seen, by combining eqs (5) and (6), that 
the diffusion ratio is given by 

COS fit 
D = - -  (17) 

a cos  f12 

The value of a [given by eq. (1)] may be determined from 
cascade or rotor tests. It may be seen in Fig. 7 that the 
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The variation of the diffusion factor with the local flow 
coefficient for a section close to tip 

0-78 ~ , , ~  

0-74 / ~,4~'U 

A . . . . .  . ....... . ..... Cc.st~,Ic ~,t3~) o o 

0.7 0.55 0-59 0.63 0.67 0-71 0.75 0.79 

Fig. 4. The variation of the diffusion factor with Y for the section 
close to tip 

condition given by eq. (2), actually in the form ofeq. (3), 
can be attained just prior to stalling. If, in place of these, 
eq. (17) for D is evaluated and also plotted against 
cot ill, it may be shown (see below) that the condition 
expressed by eq. (2) can only occur when the derivative, 
dD/d cot ill, is negative, i.e., after it has passed through a 
minimum. Figure 3 shows the trend which D follows, 
using experimental data from the rotor mentioned above 
corresponding to a section 25 mm inward from the tip. It 
was decided to choose D as a suitable description of a 
cascade, or blade section, performance because of the 
following factors: (i) it is well known that the practical 
(lower) limit to D in a compressor cascade is around 0.7 
(this value being equivalent to a de Haller number of 
0"51); (ii) that the curve must approach (more-or-less 
closely) around design incidences, the curve for loss-free 
flow, which corresponds to a equal to unity, namely, 
D = cos fli/cos f12 ; and (iii) the degree of blockage 
occurring at the minimum diffusion, am, locates the posi- 
tion of the minimum along the abscissa. In fact, it is 
convenient to change the abscissa from cot fll to the 
ratio Y given by 

COS fli y = - -  
cos f12 

for then the line Y = D represents loss-free flow and the 
ratio, AB/AC in Fig. 4, is the value of am at D equal to 
DM. It is thus possible to write the D-function in the form 

D = D(Y, am, Dm) (18) 

where Dm the minimum diffusion ratio; evaluated via 
eqs. (1) and (5a) (corresponding with near maximum 
pressure rise) and c%, the blockage at minimum diffusion 
ratio, may each be determined from experimental data. 
The form of the above function is then easily constructed 
since it has concave-upward form at the minimum ratio. 
In the analysis, the derivative of D with respect to radius 
will be'required, hence a simple analytic form is essential 
in order that this derivative may be obtained as follows: 

dD dD dY aD dam dD dDm 
+ - -  - -  + - -  (19) 

dr OY dr C3am dr c3D m dr 

In the results presented herein, a variation of am and DM 
upon radius has been allowed but in evaluating the gradi- 
ent of D, the second and third terms in eq. (19) were 
ignored. This permitted the use of a more complex rela- 
tionship; in fact a fourth-degree polynomial in terms of 
the quantity, (cot fll - cot fl~.o), where the suffix '0' 
denoted the point at which the loss starts to increase 
from zero was assumed. However, this curve does not 
attempt to achieve correct loss values at lower 
incidences. 
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DISCUSSION O F  E Q U A T I O N  FOR 
AXIAL VELOCITY 

Having determined the analytical form of D, the 
coefficient, A, in eq. (16) may be examined. Referring to 
Appendix 1 it will be seen that the coefficient may be 
expressed in terms of the function, C(r) there used. 
Equating this to zero determines the circumstance in 
which a singularity appears in the solution for V'z. This 
condition is 

(1 + sec 2 / /2 .  C(r))(V'z + S ) =  0 (20) 

The condition V', = - S  represents an extreme case, 
therefore, the condition under which the first bracket 
becomes zero is examined. Substituting for C(r) from the 
Appendix it is evident that the condition for a singular 
solution is given by: 

dO ( D sin 2//, ] 
d(cot//1--~) = D's = - c o s  lt2 ~ 2 + - ~ n ~  l (21) 

and it should be noted that the source intensity (other 
than through its relationship to D) does not occur. A 
proper analytical treatment of the singularity need not 
be carried out, since the real flow would break down into 
another regime before infinite gradients could be ap- 
proached. In addition the linearization assumptions in- 
herent in the treatment would begin to be violated. 
Further examination of eq. (21) reveals that the above 
condition is reached after the condition for the instabil- 
ity to small disturbances, namely, that given by eq. (2). 
It may be shown, using eq. (2) that this latter condition is 
also given by 

dD 
-½D sin 2//x (22) 

d(cot f l l  ) 

Dividing eq. (21) by eq. (22) it may also be shown that 
the ratio of slopes is given by 

1 
cos fie + ctD ~ 

Since both ct and D are less than unity, it is thus seen that 
small disturbance instability must precede the appear- 
ance of the singularity limit. 

N U M E R I C A L  S O L U T I O N  

The numerical solution of eq. (16) (full equation given in 
Appendix 1)may be proceeded with once the presence of 
the singularity is known. For reasons connected with the 
form of the solution it has been found that integration 
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Fig. 5. Axial velocity variation along span 
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should commence from the tip, marching inwards tow- 
ards the hub. For  high values of V;, the solution is ob- 
tained with the aid of the appropriate computer library 
routines and an example is shown in Fig. 5 for V'z(r,) at 
the tip, of 27 m/s. The mass flow is found after the solu- 
tion and is expressed in terms of ~b, given by V'z/~rt. As 
V'z(r,) is reduced, the solution takes on a limiting form 
over, in this example, the inner 65 per cent of blade 
height. Thus change in V'~ with reducing mass flow is 
confined to the outer 35 per cent until a point is reached 
when the integration process breaks down (because the 
range now contains a singularity). The numerical rou- 
tine now, properly, 'fails' indicating also a physical limi- 
tation inasmuch as an infinite gradient is not 
meaningful. The dotted line shown corresponding to a 
V'z(r,) of 20 m/s is, in fact, inadmissible since the numeri- 
cal routine has succeeded in 'jumping' the singularity; 
therefore, it must be excluded. For V'~(r,) equal to 19 m/s, 
the integration fails at 90 per cent of blade height. 

The behaviour of D' over the blade height is shown 
plotted in Fig. 6 and it is evident that the flow is unstable 
to small disturbances between 35 and 97 per cent of 
blade height. It is also clear that the above limiting V'~ 
solution just reaches the singularity limit at 77.5 per cent 
of height. It is possible to calculate from the range of 
solutions the local if2 - ~b characteristics for three blade 
sections at radii of 0-5009 m (25 mm from the hub), 
0'4387 m at mid-blade-height, and 0.3764 m (25 mm 
from the tip). These are shown plotted in Fig. 7, and also 
given, are experimental curves for a single rotor having 
the same dimensions and a relative outlet angle vari- 
ation close to the variation assumed for the above calcu- 
lation (see Appendix 2). The variation of Du and am used 
in the above calculation was obtained from experiment, 
although it should be noted that the minimum diffusion 
factor point was only passed near the tip and hub of the 
experimental rotor. Nevertheless, the values of DM and 
am used were taken from the experimental results at 
points as close as possible to the minimum D; these 
values are also given in Appendix 2. 

The question naturally arises as to the existence of 
solutions corresponding to values of V'z which are every- 
where sufficiently low so as not to contain the singularity 
within the range of radius. These results will lie on the 
D-Y curve to the left of the critical value (see Fig. 4) and 
will give rise to meaningful solutions. However, the re- 
sulting integrated pressure-volume characteristic (an 
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example is shown in Fig. 8) will exhibit a 'gap' which 
indicates that this portion of the characteristic is not 
accessible by throttle valve adjustment (a fixed setting of 
which will allow a roughly parabolic dependence of 
pressure on volume). In any case, every point across the 
radius for these 'beyond critical' points is unstable to 
small disturbances, i.e., the slopes are more negative 
than is given by eq. (22). 

A further question arises: what might be the effect on 
the above performance if each blade section were to 
reach its minimum diffusion ratio at a smaller or larger 
value of blockage (i.e., what would be the effect on a 
series of rotors of differing CXm)? Some indication of this 
is given in Fig. 9 where the limit of stable (to small 
disturbance) operation ~,., and the 'singularity' limit ~,.c 
is plotted against CXm. In this example values of (x m lower 
than 0-725 allow the axial velocity to reach zero before 
the limit is reached. The implication here is that a regime 
of 'reverse flow', near the hub in this example, will 
intervene. 

GENERAL D E D U C T I O N S  FROM THE M O D E L  

The conclusion is drawn that the theoretical model of 
the blade row presented above predicts a unique break- 
down of the normal flow regime by a mechanism un- 
related to that of small disturbance instability. The 
breakdown is preceded by the appearance of a limiting 
distribution (over part of the radius), followed by the 
appearance of a 'hole' in the axial velocity distribution 
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which is physically to be regarded as a breakdown. 
The fact that the real blade row passes irreversibly into a 
deep stall regime is an indication that a different, alter- 
native, regime has been found. Reasonable agreement 
between experimental and predicted characteristics is 
demonstrated. However, it should be noted that the D- 
curves used in the numerical predictions passed much 
more closely to the loss-free D-curve than did the exper- 
imental curves. Had D-curves been used which 
resembled the experimental ones in the lower incidence 
region, results much closer to the experimental pressure 
rise characteristics would have been obtained. However, 
it is more important here to concentrate upon flow 
coefficients in the neighbourhood of the theoretical limit. 

The realization that there are abrupt limitations to the 
behaviour of axial compressor rows had been ap- 
preciated firstly by McKenzie (3) who developed a 
theory, using simple radial equilibrium at row exit, which 
was able to predict the shape of the pressure-volume 
characteristic up to stall. Secondly, Fabri (4), also 
assuming simple radial equilibrium at rotor exit, demon- 
strated that by using the earlier hydraulic 'shock-loss' 
model, then a condition could arise in which the con- 
trolling equation became singular. He attributed the 
appearance of rotating stall to the presence of this 
condition. 

The analysis presented above has the virtue of simpli- 
city but at the same time represents a iinearization of the 
equations of motion. It would seem a worthwhile objec- 
tive to carry out a completely non-linear analysis of the 
same problem to gain more physical insight to 
the model. 
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APPENDIX 1 

Evaluation of S and S~ in terms of V'z, D and fl2- 
From eqs. (4), (5), and (5a) namely: 

s = v ; -  v~ 
r t t  = V~./Vz 

and 

= cos f l l /D  COS f12 

(1.1) 

(1.2) 

(1.3) 

Substituting for V~ from (1.1) into (1.2) and putting 
cos fit = V'~/(V'~ 2 + f~2r2) 1/2 into eq. (1.3), and equating 
the two resulting equations gives 

S = D(V;  2 + n2r2) tn cos B2 - v: (1.4) 

putting Q2 = V~2 + f~2r2 the above equation becomes 

S = DQ cos/3 2 - V'. 

differentiating the above equation with respect to r gives 

d,2 (ocos 2)l dv: I S ~ =  - D Q s i n f l 2 d r  + ~ V ; ~ - r  + f~2r 

dD dV', 
+ Q cos f12 dr dr (1.5) 

In evaluating dD/dr ,  only the first term of eq. (19) is 
used, thus 

dO dD d(cot ill) 
d-~ = d(cot tim)' dr (1.6) 

Now 

v~ 
m cot fll ~ r  

differentiating the above with respect to r and substitut- 
ing in eq. (1.6) gives 

dD_ D' IdV', V',l (1.7) 
dr f~r I dr r I 

where 

dD 
D ' - -  

d(cot ill) 

Substituting eq. (1.7) in (1-5) gives 

~ - r  dfl2 D ~ c o s  f12 I , ~ d  V', ,} 
Sr = - D Q  sin f12 + IV, + f~2r 

+ Q cos fl2D' IdV' ,  V'z) dV', 

fir ~ dr r dr 

Substituting for Sr in equation 15 gives the final equation 
of the system as 

dV'z 
(V'~ + S)(1 + sec 2 f12 • C(,')) dr 

= 2f~Zr - f~rt'2 V'z - f~rt'2S - t2f~V'~ - t2DS 

+ (V', + St  - f~r) 

2f~r - V', t'2 r - St'2 r - V', t2 - St2 
× 

F 

+ E ( r ) .  (V'z + S + V',t~ + Sty)  (1.8) 

where 

DV'z cos f12 
C(r) - + 

9. 

Df~2r cos f12 
E(r)  = 

Q 

Q cos f12 D' 
f~r 

DO sin f12 - -  
dfl2 QV'zD' cos f12 
d r  [~r 2 
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APPENDIX 2 

Details of Rotor Tested 
The rotor tested has a C4 base profile, 9 per cent maxi- 
mum thickness (30 per cent from L.E.), circular arc 
camber (number of blades = 20). 

Blade 
section 

Root 
Mean 
Tip 

Chord 
Camber Stagger length 
(degrees) (degrees) (mm) 

45.00 44.5 152 0'75 0"631 39 
45.00 49'6 152 0"9 0-657 40 
45.00 54"7 152 0'8 0"705 47 
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